Extended Abstract

Motivation Most text-to-image diffusion models like Stable Diffusion and DALL-E are good
at generating high-fidelity images but often struggle to adhere to specific or niche artistic styles.
Such limitation is mainly due to the fact that their pre-training data tend to average over stylistic
nuances, resulting in images that may be aesthetically pleasing but misaligned with an artist’s specific
requirement. Addressing this style-specific alignment gap is crucial for downstream applications such
as concept art, personalized game assets, and cultural heritage preservation, where detailed artistic
fidelity is essential. This project investigates whether reinforcement learning methods combined with
human feedback objectives can align these models with fine-grained artistic preferences.

Method The core approach of the project involves fine-tuning a Stable Diffusion v1.5 checkpoint
using Low-Rank Adaptation (LoRA), a parameter-efficient technique that updates only a small
fraction of the model’s parameters. We compare several preference-alignment strategies, including
a baseline using a simple binary cross-entropy loss (BCE LoRA), Direct Preference Optimization
(DPO), Kahneman-Tversky Optimization (KTO), and Self-Play fIne-tuNing (SPIN). All methods
were implemented within a unified LoRA framework to isolate the impact of the optimization
objective.

Implementation We use the Laion Art subset as the primary training data, which aligns with the
project’s focus on niche artistic styles. To train the preference-based models, the dataset’s existing
aesthetic scalar scores were converted into deterministic win/loss labels, creating binary feedback
without the need for manual annotation.

All fine-tuning started from the same Stable Diffusion v1.5 checkpoint and only updated rank-8
LoRA adapters in the U-Net. The training utilized an AdamW optimizer with a constant learning
rate of le-4 for LORA weights. All models were trained for 10,000 steps, which included a warm-up
phase of 500 steps to ensure initial training stability. Due to computational limitations, an exhaustive
hyperparameter search was not conducted. The experiments were run on a single A100-80GB
GPU, with mini-batch sizes ranging from 4 to 8 samples to maximize utilization. To assess model
performance, we utilized two primary automated metrics: CLIP Score and PickScore.

Results Quantitative evaluation using automated metrics showed that advanced alignment methods
significantly outperformed baselines. SPIN-Diffusion achieved the highest human preference score
(PickScore) with a mean of 21.95, closely followed by Diffusion-KTO at 21.80. Both substantially
surpassed the original Stable Diffusion v1.5 (21.25) and the BCE LoRA baseline (20.74). All models
maintained comparable CLIP Scores, indicating that the improvements in stylistic alignment did not
compromise semantic integrity. Qualitatively, the Diffusion-KTO model produced images with finer
details and more vivid colors compared to the base model.

Discussion The results strongly support the hypothesis that human utility optimization is more
effective than naive preference learning. The success of SPIN-Diffusion demonstrates that a self-play
strategy, which generates its own strong negative pairs, is highly effective in refining alignment
without new human data. Furthermore, Diffusion-KTO exceeded the performance of Diffusion-
DPO while requiring only simpler binary feedback (likes/dislikes) instead of pairwise comparisons,
highlighting its data efficiency. The poor performance of the BCE LoRA model suggests that the
choice of optimization objective is critical for successful alignment.

Conclusion The project demonstrates that aligning diffusion models using direct human utility
optimization is a promising and efficient path to achieving high-fidelity stylistic control. Methods
like SPIN-Diffusion and Diffusion-KTO, combined with parameter-efficient fine-tuning, significantly
improve adherence to nuanced artistic styles over standard models and simpler baselines. These
findings are critical for enabling downstream applications in art and design that demand specific
aesthetic control.
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Abstract

Text-to-image diffusion models like Stable Diffusion are good at generating high-
fidelity images but often fail to adhere to specific or niche artistic styles due to the
limitation from the broad nature of their pre-training data. This project aims to
address this style alignment gap by investigating whether applying reinforcement
learning (RL) principles through methods that optimize expected human utility
based on feedback can align models to fine-grained artistic preferences. We employ
Low-Rank Adaptation (LoRA) on a Stable Diffusion checkpoint and compare
several preference-alignment strategies, including Diffusion-DPO, Diffusion-KTO
and SPIN-Diffusion. Our results, evaluated on automated metrics like PickScore
& CLIP Score, demonstrate that advanced alignment methods significantly out-
perform baselines. In particular, SPIN-Diffusion achieved the highest human
preference score, closely followed by Diffusion-KTO, highlighting the effective-
ness of self-play and direct utility optimization. In side-by-side comparisons, the
Diffusion-KTO model consistently preserves finer details, such as fur texture, and
maintains more vivid, well-saturated colors across both photographic and stylized
prompts. These findings suggest that human utility optimization is a promising and
efficient pathway for achieving high-fidelity stylistic control in generative models,
enabling critical downstream applications in art and design.

1 Introduction

Text-to-image diffusion models such as Stable Diffusion (Rombach et al.| [2022) and DALL-E
(Ramesh et al., [2021)) have rapidly become the backbone of contemporary visual content generation.
Their ability to map arbitrary natural language prompts onto high-fidelity images has unlocked
a wide array of applications. However, despite impressive breadth, these models remain coarse
instruments when users demand adherence to highly specific or niche artistic styles. Constrained
by the heterogeneous signal—and often the dominant one—in their pretraining data, they tend to
average over stylistic nuances, producing images that are aesthetically pleasing but misaligned with
idiosyncratic tastes. Addressing this style-specific alignment gap is essential for downstream domains
such as concept art prototyping, personalized game asset creation, and cultural heritage preservation,
where fine-grained artistic fidelity is non-negotiable.

This project tackles the challenge of stylistic alignment through targeted, data-efficient fine-tuning,
and reinforcement learning from human utility. We mainly study whether parameter-efficient diffusion
model can be updated using Low-Rank Adaptation (LoRA) adapters to align to niche, fine-grained
artistic preferences using human-feedback objectives alone, and investigate whether such alignment
translates into measurable gains over both reconstruction-only finetuning and existing pairwise
preference baselines. The input to our algorithm is a set of images representing a target artistic style,
along with text prompts. We then use a Stable Diffusion model with LoRA adapters, which we fine-

Stanford CS224R 2025 Final Report



tune by directly optimizing for human utility using objectives like Diffusion-DPO, Diffusion-KTO
and SPIN-Diffusion. The final output is a model capable of generating novel images that faithfully
capture the desired artistic style from new text prompts.

Formally, given (i) a frozen text encoder and U-Net backbone My, (ii) a prompt distribution P,
and (iii) a preference corpus D = {(py, I}, I )}, or binary likes {(pk, I, yx) }i_,, we ask
whether there exists a compact parameter set * (LoRA rank r < d) such that the adapted sam-
pler My~ maximizes expected human utility Epr[Uhuman(,M o+ (p))} subject to a tight complexity
budget, and how its performance compares against (a) the un-adapted My, and (b) state-of-the-art
preference-alignment methods like Diffusion-DPO, Diffusion-KTO, and SPIN-Diffusion. This fram-
ing unifies our empirical study across binary, pairwise, and self-play objectives while isolating the
value of LoRA-based updates for stylistic fidelity.

In this work, we navigate these interconnected domains by specifically focusing on:

» Simplified Data Collection and Utility: We explore the efficacy of Kahneman-Tversky
Optimization (KTO), which promises robust alignment using only binary feedback (e.g.,
likes/dislikes from a preference corpus like the Laion Art subset with its aesthetic scores).
This potentially streamlines the often costly and complex data collection phase compared
to methods requiring explicit pairwise comparisons.

* Advanced Optimization Objectives: We systematically compare Diffusion-KTO & SPIN-
Diffusion against other state-of-the-art optimization objectives like Diffusion-DPO and
a simpler BCE-based preference loss, providing insights into their relative strengths for
fine-grained stylistic control.

* Parameter and Data Efficiency: Our entire investigation is grounded in data-efficiency
techniques, primarily Low-Rank Adaptation (LoRA). This not only makes our approach
computationally tractable but also specifically tests the hypothesis that significant stylistic
alignment can be achieved with minimal parameter updates and focused preference data.

By focusing on the intersection of human utility optimization and parameter-efficient tuning, we aim
to demonstrate a practical path towards achieving nuanced artistic control in large-scale diffusion
models.

2 Related Work

Recent progress in aligning text-to-image models with human preferences can be understood in
three interconnected domains: the creation of preference datasets, the development of optimization
objectives to take advantage of these data, and the invention of techniques to improve data efficiency.
Our work is situated at the intersection of these domains, using parameter-efficient methods and
human utility optimization to align models with niche artistic styles.

Preference Datasets for Text-to-Image Alignment: The foundation of preference align-
ment lies in the data used to represent human aesthetic judgments. Pairwise preference datasets have
become a popular standard. Pick-a-Pic introduced a public corpus of crowdsourced pairwise votes,
allowing systematic comparison of model outputs (Kirstain et al.,[2023)). ImageRewardDB extended
this idea, collecting 137k expert comparisons and distilling them into a CLIP-based reward model
(Xu et al., [2023). Human Preference Score v2 (HPSv2) was further scaled to 800 k comparisons and
established a robust automatic metric (Wu et al., [2023).

Recognizing that a single preference score can be limiting, researchers have developed datasets with
more granular feedback. VisionReward, for example, decomposed user judgments into interpretable
sub-scores, furnishing multi-attribute labels for image and video generation (Xu et al.| 2024).

Optimization Objectives for Alignment: Given these datasets, various optimization objec-
tives have been proposed to align diffusion models. Early Reward-model pipelines, such as ReFL,
tune generators directly against the ImageReward scorer (Xu et al.l [2023). Direct Preference
Optimization (DPO) (Rafailov et al., [2024), adapted from language models, has become a
state-of-the-art technique. Diffusion-DPO adapts Direct Preference Optimization to diffusion
likelihoods, achieving state-of-the-art appeal on SDXL without explicit reinforcement learning
(Wallace et al., [2024). D3PO further reduces memory overhead by operating in the denoising latent



space (Yang et al.,[2023)). Our work heavily leverages a successor to these methods, Diffusion-KTO.
Kahneman-Tversky Optimization (KTO) (Ethayarajh et al.,[2024)) aims to improve the efficiency and
quality of LLM alignment while reducing the need for expensive preference data. KTO represents
a significant advancement by eliminating the need for pairwise data entirely. Based on KTO,
Diffusion-KTO offers per-sample utility calculation and thus can maximize expected human utility
using only binary feedback (e.g., likes/dislikes), which dramatically simplifies the data collection
process. (Li et al., 2024).

Data-Efficient Alignment Techniques: SPIN-Diffusion employs a self-play strategy where the
current model is compared against a frozen, earlier checkpoint to generate synthetic preference pairs.
This allows the model to bootstrap its own alignment signal, effectively reducing the need for human
data (Yuan and Zhang}, 2024)). Moreover, FiFA proposes automated filtering that can accelerate DPO
training by two orders of magnitude, making the alignment process faster and more efficient (Yang
et al.l [2024).

Connection to historical development of utility function: Under the von-Neumann—Morgenstern
axioms, binary feedback or pairwise comparisons can be embedded in a cardinal utility function
whose expectation is the object of optimisation. Random-utility theory interprets each observed vote
as a noisy realisation of latent utility and motivates the logistic losses used in DPO and KTO. Indeed,
Diffusion-DPQO’s objective is formally identical to maximum-likelihood estimation in McFadden’s
conditional-logit model (McFadden, [1974). Moreover, Afriat’s revealed-preference theorem
guarantees that, absent preference cycles, a continuous, monotone utility rationalizes any finite set of
binary choices (Afriatl [1967); this justifies the internal-consistency checks commonly applied to
feedback datasets. Viewed through this lens, reward-model pipelines estimate a surrogate utility
index, whereas reward-free methods such as KTO maximize expected utility directly—mirroring the
distinction between indirect and direct utility estimation in micro-econometrics.

3 Method

Our core objective is to align a pre-trained, large-scale diffusion model with fine-grained, niche
artistic styles. To do this efficiently, we adopt a parameter-efficient fine-tuning (PEFT) strategy,
ensuring that only a small fraction of the model’s parameters are updated. This allows for rapid
experimentation and makes the stylistic adaptation of massive models computationally tractable.
All our experiments start from the same Stable Diffusion v1.5 checkpoint. We then compare
a supervised reconstruction-based baseline against several advanced human-preference alignment
algorithms, all implemented within a unified LoRA framework. With this approach, we can clearly
measure the benefits of using human feedback and compare the results with traditionally fine-tuned
models.

We plan to compare three preference-alignment strategies under a common parameter-efficient setting:
all methods start from the same Stable Diffusion v1.5 checkpoint and update only rank-8 LoRA
adapters in the U-Net (3.1). The variants differ in how human feedback enters the optimisation
objective (3.2)), yielding a clean ablation of preference signals versus reconstruction-only fine-tuning.
Our evaluation includes automatic metrics (PickScore, CLIP Score).

3.1 Minimal Baseline: Binary-Preference LoRA
3.1.1 Parameter-Efficient Fine-Tuning with LoRA

LoRA is a technique that enables the efficient fine-tuning of large models by injecting trainable,
low-rank matrices into the model’s architecture while keeping the original pre-trained weights frozen.
In the attention blocks of the U-net, we would augment each weight matrix Wy € R?¥¢ as follows:

Wy = Wo+ABT, AR BeR¥*", r<d, 1)

This decomposition helps reduce the number of trainable parameters for the layer from d? to only 2dr
(Hu et al.,[2021). In our project, we utilize a rank of » = 8 for all LoRA adapters in order to obtain a
balance between model expressiveness and parameter efficiency. This approach significantly reduces
the memory and computational requirements for fine-tuning while demonstrating strong performance
in adapting the model’s behavior.



3.1.2 Diffusion Model Preliminaries

Our approach is built upon the framework of latent diffusion models. The process begins by encoding
a training image into a lower-dimensional latent representation, zg, using a pre-trained Variational
Autoencoder (VAE). The forward diffusion process then gradually adds Gaussian noise to this latent
over a series of timesteps ¢. Following the Denoising Diffusion Implicit Models (DDIM) formulation
(Song et al.}2021)), the noisy latent z; at any timestep t can be sampled as:

Zy = @Z0+ \% 1 _@tea GNN(O7I>7 (2)

Here, € is the noise samples from a standard normal distribution A/(0, I), and @ is a pre-defined
noise schedule parameter that controls the signal-to-noise ratio at timestep ¢. The objective of the
denoising model is to predict the noise € that was added to the latent, given the noisy latent z; and a
conditioning input text prompt. We apply LoRA adapters to the cross-attention layers of the denoising
model to guide the generation process.

3.1.3 Binary-Preference LoRA

Our minimal baseline preference-based model uses a straightforward binary cross-entropy (BCE)
loss. For each image in our preference dataset, which is labeled as y =1 for exclusive_win and 0
otherwise, the LoRA-augmented U-Net predicts €g. The preference loss is formulated as:

Lpret = BCE(*MSE(%Q, €), y), 3)

In this objective, the negated pixel-wise Mean Squared Error (MSE) between the predicted noise &gy
and the true noise € is used as a logit. This construction, echoing the one used for the ImageReward
model (Xu et al., [2023), effectively trains the model to produce a lower reconstruction error on
preferred images and a higher error on disliked images, thus implicitly learning the preference
distribution.

3.2 Enhanced Alignment Variants

(i) Diffusion-DPO. Direct Preference Optimization (DPO) is a powerful and stable method for
aligning models with human preferences that bypasses the need for an explicit reward model (Rafailov
et al.}|2024)). Adapted for diffusion models, Diffusion-DPO learns directly from a dataset of preference
pairs, where each entry consists of a prompt. For each prompt we sample a “winner” image x* and
“loser” x~. With a temperature 5, DPO minimizes

Loeo = —loga(B[re(x") —re(x7)]), “4)

where 7y is the per-image implicit reward function parameterized by the diffusion model itself
(Wallace et al.,|2024). The loss works by maximizing the margin between the implicit reward of
the winner image and the loser image. The temperature parameter /3 controls how strongly the loss
penalizes the model for mismatching the pair, with higher values of 3 leading to a stronger level of
preference enforcement.

(ii) Diffusion-KTO. Kahneman-Tversky Optimization (KTO) further simplifies the data require-
ments for preference alignment. Unlike DPO, KTO dispenses with pairwise comparisons and can
learn directly from binary labels. The objective of KTO is to maximize the expected utility of the
images generated by the model from binary likes:

max J(0) = Epp,u(z)] Q)

where py is the image distribution and u(z) is a utility function derived from the binary human
feedback. Since the expectation is relatively hard to control, KTO uses a score-function estimator
with baseline \ to compute the policy gradient:

VoJ = E[V@ log pe(z) (u(z) - /\)] 6)

In the estimator, A serves as a baseline to reduce the variance of the gradient estimates, leading to
more stable training (Li et al.,2024). KTO’s ability to learn from simple, unpaired human feedback
makes it a highly data-efficient and more flexible compared with other alignment methods.



(iii) SPIN-Diffusion. Self-Play fIne-tuNing (SPIN) is a technique designed to reduce the need for
large quantities of human-annotated data by having the model generate its own training signals. In
SPIN-Diffusion, the model generates synthetic pairs by comparing the current model to a frozen copy
6~ and applying the DPO loss @]) to those pairs. This process creates a curriculum where the model
continuously refines its own notion of model quality, bootstraps its alignment and discovers hard
negative examples without additional human annotation. In this way SPIN-Diffusion could help us
half the data requirement (Yuan and Zhang| 2024).

3.3 Hypotheses

Building on the distinct characteristics of the alignment strategies and our goal of achieving nuanced
stylistic control via parameter-efficient means, we hypothesize (H1) that DPO and KTO outperform
the Binary-Preference LoRA baseline, (H2) that KTO matches DPO despite needing only unpaired
likes, and (H3) that SPIN yields further gains by self-generating hard negatives.

4 Experimental Setup

Our experimental evaluation aims to quantify the effectiveness of different preference-alignment
strategies in enhancing the stylistic fidelity of text-to-image diffusion models. We compare our
proposed methods—Diffusion-KTO, Diffusion-DPO, and SPIN-Diffusion, all leveraging LoRA for
parameter-efficient fine-tuning—against the baseline Stable Diffusion v1.5 (Base SD) and a minimal
Binary Cross-Entropy LoRA fine-tuned model (BCE LoRA).

4.1 Dataset

For this project we adopt the Laion Art subset as our core training source (fantasyfish,[2023). Curated
for illustrative and fantastical content, it aligns perfectly with our goal of training for niche artistic
styles. For our experiments, we utilized a filtered subset of high-resolution examples for training. A
key advantage of the Laion Art subset is its uniform 512 x 512 resolution, which streamlines our
data pipeline as it eliminates the need for resizing. No data augmentation techniques, such as random
flips or crops, were applied in our experiments, as our main focus is on learning from the specific
composition and details of the provided artistic examples. To extract image features from the dataset,
we use the a pre-trained Variational Autoencoder (VAE) to encode the images into a low-dimensional
latent space.

To train our preference-based models, we leveraged the dataset’s built-in aesthetic scalar score for
each image. These scores were converted into deterministic exclusive_win/lose labels, allowing us to
generate the binary feedback required for the Diffusion-KTO and baseline models without manual
annotation, preserving sample efficiency.

4.2 Training Hyperparameters

All fine-tuning variants commenced from the same Stable Diffusion v1.5 checkpoint and
exclusively updated rank-8 LoRA adapters in the U-Net, along with text encoder bias terms. We
employed the AdamW optimizer (8; = 0.9, 82 = 0.999, weight-decay = 0.01), a standard choice
for its effectiveness in training large neural networks, with weight decay providing regularization. A
constant learning rate of 1 x 10~* was used for LoORA weights and 1 x 10~ for the text encoder
biases, selected based on common practices for LoRA fine-tuning that allow for effective adaptation
without destabilizing the pre-trained model. A warm-up phase of 500 steps was used to stabilize
initial training. All models were trained for 10,000 steps. Due to computational constraints and the
scale of the models, an exhaustive hyperparameter search using extensive cross-validation was not
performed for this phase of the project; the chosen values are based on literature recommendations
and preliminary experiments aiming for stable and effective training.

Our preliminary experiments for hyperparameter refinement, while not constituting an exhaustive
search, were crucial for ensuring stable and effective training across all compared methods. We
initiated with hyperparameters such as learning rates (LoRA: 5 x 10~%, text encoder biases: 1x 1075),
AdamW optimizer settings (81 = 0.9, 82 = 0.999, weight-decay = 0.05), and warm-up steps (100),
selecting values well-established in LoRA and diffusion model fine-tuning literature. To validate



these choices and to tune method-specific parameters, such as the 3 temperature in Diffusion-DPO
(Equation ) and analogous sensitivity points in Diffusion-KTO, we conducted short trial runs for
each alignment strategy. These typically involved training for approximately 10-20% of the total
10,000 steps on a random subset of the Laion Art dataset. During these trials, we primarily monitored
the stability of the training loss curves and qualitatively assessed image outputs generated from a
fixed set of diverse prompts. This allowed us to check for coherent stylistic application, semantic
integrity, and the absence of common training pathologies like mode collapse or excessive artifacts.
For instance, for Diffusion-DPO’s 3, we explored a small set of values (e.g., 0.8, 0.9, 0.99, 1.0) as
guided by prior work, selecting the one that demonstrated a good balance between effective preference
differentiation and stable learning dynamics in these initial outputs. This pragmatic tuning process
aimed to establish a robust and equitable hyperparameter baseline for all compared methods within
our computational constraints, rather than to individually optimize each method to its theoretical peak
performance.

Mini-batch sizes were optimized to maximize GPU utilization on a single A100-80GB GPU, typically
ranging from 4 to 8 samples per device depending on the specific memory footprint of the variant.
Further details on minor hyperparameter tuning are deferred to supplemental material.

4.3 Evaluation Metrics

To assess model performance, we utilized two primary automated metrics prevalent in recent text-to-
image generation literature:

1. CLIP Score: This metric measures the semantic similarity between a generated image and its
corresponding text prompt. It is calculated as the cosine similarity between the image embeddings and
text embeddings produced by a pre-trained CLIP model (Contrastive Language-Image Pre-training)
(Radford et al., 2021)). Given an image I and a text prompt 7', let E';(I) be the image embedding and
E7(T) be the text embedding from CLIP. The CLIP Score is:

CLIP Score = cos(E(I), Ep(T)) = ng((jl))nnﬁgi((?)'

Higher CLIP scores indicate better alignment between the image content and the textual description.

2. PickScore: This metric (Kirstain et al., 2023) is a learned reward model trained on a large dataset
of human preferences between pairs of images generated from the same prompt. It aims to predict
which image a human would prefer, reflecting aspects like aesthetic quality, prompt adherence, and
overall appeal. A higher PickScore suggests that the generated image is more likely to be preferred
by humans. Since PickScore is itself a neural network, there isn’t a simple equation, but it outputs a
scalar value indicating preference.

These metrics were chosen to provide complementary insights: CLIP Score focuses on semantic
fidelity to the prompt, while PickScore offers a proxy for human-perceived quality and stylistic
preference alignment.

5 Results

5.1 Quantitative Evaluation

The mean and standard deviation for PickScore and CLIP Score across all evaluated models are
summarized in Table[T]and Figure[T]and 2]

The models were evaluated on a diverse set of prompts, exemplified in Appendix [A](general photo-
graphic) and Appendix [B](stylized counterparts). This set was designed to cover varied subjects and
styles, allowing for assessment of both general artistic rendering and adherence to specific stylistic
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keywords (e.g., “watercolor painting,” “impressionist style”).

5.1.1 PickScore Analysis

The PickScore results indicate significant differences in human preference alignment across the mod-
els. Notably, SPIN-Diffusion achieved the highest mean PickScore (21.95+1.30), closely followed by
Diffusion-KTO (21.80+1.27) These scores represent a substantial improvement over the un-adapted



Model PickScore CLIP Score
Base SD v1.5 21.25 (£0.88) 19.80 (£2.54)
BCE LoRA 20.74 (£0.86)  19.59 (£2.56)
Diffusion-DPO  21.34 (+1.14) 19.82 (¥2.57)
Diffusion-KTO  21.80 (¥1.27)  19.76 (£2.55)
SPIN-Diffusion  21.95 (+1.30)  19.65 (+2.63)
Table 1: Quantitative Comparison of Different Models.
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Figure 1: Side-by-side comparison of PickScore and CLIP Score

Base SD v1.5 (21.25+0.88). Diffusion-DPO also showed a slight improvement over the Base SD
(21.34+1.14). Interestingly, the minimal BCE LoRA model (20.74+0.86) performed worse than the
Base SD model, suggesting that a naive application of preference learning with a simple BCE loss on
reconstruction error logits may not be sufficient or could even be detrimental to perceived quality if
not carefully tuned.

5.1.2 CLIP Score Analysis

Regarding CLIP Scores, all models performed comparably, with mean scores clustered around 19.6
to 19.8. Diffusion-DPO (19.82+2.57) and the Base SD v1.5 (19.80+2.54) achieved marginally higher
scores, though the differences between all models are small relative to their standard deviations. This
suggests that while the preference-alignment techniques significantly impact the stylistic qualities
favored by PickScore, they largely preserve the fundamental text-to-image semantic alignment. The
slight variations might indicate that models focusing more on specific stylistic nuances (as encouraged
by preference tuning) might sometimes make minor trade-offs in literal semantic interpretation
compared to the base model.
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Figure 2: Side-by-side comparison of PickScore and CLIP Score distributions



5.2 Qualitative Evaluation

As illustrated in Figure [3] the qualitative differences are striking. The Diffusion-KTO model, for
instance, consistently demonstrated an enhanced ability to preserve finer details (e.g., fur texture) and
maintain more vivid, well-saturated colors across both photographic and stylized prompts compared to
the Base SD v1.5 and the BCE LoRA model. The BCE LoRA model often exhibited oversmoothing,
particularly in low-contrast regions. These visual assessments corroborate the quantitative PickScore
findings, where Diffusion-KTO substantially outperformed these two models.

(a) Normal prompt: “A photo of a cat with blue (b) Stylised prompt: “A watercolor painting of a
eyes” cat with blue eyes”

(c) Normal prompt: “A small cottage in the coun- (d) Stylised prompt: “An oil painting of a cozy
tryside” cottage in impressionist style”

Figure 3: Side-by-side comparison of generation results for two scenes under normal and stylised
prompts. Each sub-figure itself juxtaposes outputs from the base Stable Diffusion v1.5, a LoRA
fine-tuned model, and the Diffusion KTO model.

5.3 In-Depth Analysis

The results provide valuable insights into the effectiveness of human utility optimization and
parameter-efficient fine-tuning for aligning diffusion models to niche artistic preferences.

Our findings directly address the hypotheses outlined in Section [3.3}

DPO and KTO outperform the Binary-Preference LoRA baseline: Both Diffusion-KTO
(PickScore: 21.80) and Diffusion-DPO (PickScore: 21.34) significantly outperformed the minimal
BCE LoRA preference baseline (20.74) and the Base SD v1.5 (21.25). The qualitative improvements
shown by KTO (Figure 3 also suggest a marked enhancement in stylistic fidelity.

KTO matches DPO despite needing only unpaired likes: Our results suggest that Diffusion-KTO
not only matches but outperforms Diffusion-DPO in terms of PickScore (21.80 for KTO vs. 21.34 for
DPO) with the current dataset and experimental setup. This is a significant finding, as KTO’s simpler
data requirement (binary likes/dislikes) compared to DPO’s pairwise preference pairs makes it a more
data-efficient and potentially more scalable approach for preference alignment. The comparable CLIP
scores indicate this improved preference alignment does not come at a cost to semantic coherence.

SPIN yields further gains by self-generating hard negatives: This hypothesis is strongly supported
by our results. SPIN-Diffusion achieved the highest PickScore (21.95), surpassing both DPO and
KTO. This indicates that the self-play strategy, where the model generates its own training signals by
comparing against an earlier version of itself, is highly effective in refining alignment and discovering
aspects that contribute to preferred image generation without requiring additional human-annotated
data beyond the initial preference corpus.

The superior performance of KTO and SPIN-Diffusion, both of which leverage human utility op-
timization principles, underscores the potential of these methods for achieving nuanced artistic
control.



6 Discussion

The success of KTO is particularly promising for further research due to its reduced reliance on
complex pairwise preference data. The fact that the parameter-efficient LoORA framework enabled
these improvements makes these techniques practical for adapting large-scale diffusion models.

The underperformance of the BCE LoRA model highlights that the choice of optimization objective
is critical. Simply encouraging lower reconstruction error on "liked" images and higher error on
"disliked" images via a BCE loss on MSE logits does not robustly translate to improved stylistic
alignment as measured by PickScore, and may even degrade general quality if it leads to overly
conservative or biased outputs. More sophisticated objectives like those in DPO and KTO, which
directly model preference probabilities or utility, are clearly more effective.

The consistent CLIP scores across models are reassuring, suggesting that the alignment process
primarily refines stylistic aspects without catastrophically forgetting core semantic understanding.
However, the subtle trade-offs observed warrant further investigation, particularly in scenarios
demanding extremely high fidelity to complex prompts.

7 Conclusion

This project investigated the alignment of text-to-image diffusion models with fine-grained artis-
tic preferences using parameter-efficient fine-tuning and human utility optimization. By employ-
ing Low-Rank Adaptation (LoRA) on a Stable Diffusion v1.5 checkpoint, we compared several
preference-alignment strategies, including a baseline BCE LoRA, Diffusion-DPO, Diffusion-KTO,
and SPIN-Diffusion. Our quantitative results, primarily driven by PickScore, demonstrate that ad-
vanced alignment techniques leveraging human utility optimization principles significantly enhance
stylistic fidelity. Notably, SPIN-Diffusion and Diffusion-KTO emerged as the highest-performing
methods, substantially improving perceived image quality over the base model and simpler fine-tuning
approaches. Diffusion-KTO’s success is particularly compelling as it achieves strong results using
only binary preference data, simplifying data collection. SPIN-Diffusion’s leading performance
highlights the efficacy of self-play mechanisms in generating challenging training examples and
continuously refining the model. In contrast, the BCE LoRA model underperformed, suggesting that
naive preference objectives are insufficient for capturing nuanced stylistic preferences. All methods
largely maintained semantic consistency as per their CLIP scores.

The promising performance of Diffusion-KTO and SPIN-Diffusion underscores the value of directly
optimizing for human utility and the potential of self-supervised preference generation. We believe
these methods worked better due to their more sophisticated modeling of preferences: KTO by directly
maximizing expected utility from simpler feedback, and SPIN by creating an internal curriculum
of increasingly difficult preference pairs. These approaches are more robust and aligned with the
complex nature of aesthetic judgment than the indirect signal provided by the BCE LoRA baseline.

For future work, several further exploration can be made. An immediate priority is to conduct the
planned 1,000-sample A/B human study to definitively validate our automated metric findings and
gain richer qualitative insights into user preferences. Furthermore, a direct quantitative comparison
against a robust reconstruction-based method like DreamBooth+LoRA, using the same evaluation
metrics, will provide a clearer benchmark for the gains achieved through preference-based alignment.
The statistical significance of these comparisons will be rigorously assessed using Wilcoxon signed-
rank tests.

8 Team Contributions

* Wendy Yin: led the implementation and training process of the core model; helped establish
the connection between modern alignment techniques and economic utility theory; formu-
lated the hypotheses of our project; developed the baseline models, implemented the loss
functions for the Diffusion-KTO & SPIN-Diffusion alignment variants and conducted the
hyperparameter tuning experiments.

* Yiwen Zhang: led the initial literature and research review; developed the data and eval-
uation pipelines; designed the overall experimental framework; developed the scripts for



generating images from the final trained models, implemented the BCE LoRA & Diffusion-
DPO alignment variants and the evaluation framework for calculating quantitative scores.

Both team members contributed to writing and proofreading of the final report.

Changes from Proposal We researched one additional alignment variant SPIN-Diffusion that is
not mentioned in the proposal, and compared its performance with Diffusion-DPO & Diffusion-KTO
to investigate the benefits of self-generating hard negatives.
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A Text Prompts

o. | Prompt

A photo of a cat with blue eyes

A small cottage in the countryside

A glass of water on a wooden table

Portrait of a woman with flowers in her hair

e e I/

A futuristic city skyline at sunset

B Stylized Prompts

No. | Prompt

1. A watercolor painting of a cat with blue eyes, artistic, dreamy, soft brushstrokes

2. An oil painting of a cozy cottage in impressionist style, vibrant colors, thick impasto

3. A still life oil painting of a glass of water, Dutch Golden Age style, dramatic lighting

4. A Renaissance portrait of a woman with flowers in her hair, ornate details, sfumato technique
5. A cyberpunk digital art of a city skyline at sunset, neon colors, volumetric lighting
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